Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states

نویسندگان

  • Valery I. Rupasov
  • Victor I. Klimov
چکیده

We propose and analyze a physical mechanism for photogeneration of multiexcitons by single photons carrier multiplication in semiconductor nanocrystals, which involves intraband optical transitions within the manifold of biexciton states. In this mechanism, a virtual biexciton is generated from nanocrystal vacuum by the Coulomb interaction between two valence-band electrons, which results in their transfer to the conduction band. The virtual biexciton is then converted into a real, energy-conserving biexciton by photon absorption on an intraband optical transition. The proposed mechanism is inactive in bulk semiconductors as momentum conservation suppresses intraband transitions. However, it becomes highly efficient in the case of zerodimensional nanocrystals, where quantum confinement results in relaxation of momentum conservation, which is accompanied by the development of strong intraband absorption. Our calculations show that the efficiency of the carrier multiplication channel mediated by intraband optical transitions can be comparable to or even greater than that for impact-ionization-like processes mediated by interband transitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carrier multiplication in semiconductor nanocrystals detected by energy transfer to organic dye molecules

Carrier multiplication describes an interesting optical phenomenon in semiconductors whereby more than one electron-hole pair, or exciton, can be simultaneously generated upon absorption of a single high-energy photon. So far, it has been highly debated whether the carrier multiplication efficiency is enhanced in semiconductor nanocrystals as compared with their bulk counterpart. The controvers...

متن کامل

Photothermal absorption spectroscopy of individual semiconductor nanocrystals.

Photothermal heterodyne detection is used to record the first room-temperature absorption spectra of single CdSe/ZnS semiconductor nanocrystals. These spectra are recorded in the high cw excitation regime, and the observed bands are assigned to transitions involving biexciton and trion states. Comparison with the single nanocrystals photoluminescence spectra leads to the measurement of spectral...

متن کامل

Semiconductor nanocrystals: structure, properties, and band gap engineering.

Semiconductor nanocrystals are tiny light-emitting particles on the nanometer scale. Researchers have studied these particles intensely and have developed them for broad applications in solar energy conversion, optoelectronic devices, molecular and cellular imaging, and ultrasensitive detection. A major feature of semiconductor nanocrystals is the quantum confinement effect, which leads to spat...

متن کامل

Many-Body Processes in the Photophysics of Colloidal Semiconductor Nanocrystals

In this work we have experimentally studied several aspects of two Coulomb processes that change the number of electrons and holes in colloidal semiconductor nanocrystals (NCs). Carrier Multiplication (CM) is the production of additional electron-hole pairs by collision of a highly excited carrier with valence electrons. Efficient CM would improve the performance of solar energy conversion devi...

متن کامل

Attosecond optical-field-enhanced carrier injection into the GaAs conduction band

1Department of Physics, ETH Zurich, Zurich, Switzerland. 2Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany. 3Present address: Department of Physics, Politecnico di Milano, Milano, Italy. *e-mail: [email protected]; [email protected] Resolving the fundamental carrier dynamics induced in solids by strong electric fields is essential for future applications...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007